
BERKELEY PAR LAB BERKELEY PAR LAB

RAMP Gold Wrap

Krste Asanovic
RAMP Wrap
Stanford, CA

August 25, 2010

BERKELEY PAR LAB

RAMP Gold Team

Graduate Students
 Zhangxi Tan
 Andrew Waterman
 Rimas Avizienis
 Yunsup Lee
 Henry Cook
 Sarah Bird
Faculty
 Krste Asanovic
 David Patterson

2

BERKELEY PAR LAB

Multicore Architecture
Simulation Challenge

 Bigger, more complex target system
 Many cores, more components, cache coherence, …
 Need to run OS scheduler, or multithreaded run time

 Sequential software simulator performance no longer scaling
 More cores, not faster cores

 Detailed software simulators don’t parallelize well
 Cycle-by-cycle synchronization kills parallel performance

 Parallel code has non-deterministic performance
 Need multiple runs to get error bars

 Software more dynamic, adaptive, autotuned, JIT, …
 Can’t use sampling

 ~No legacy parallel software
 Need to write/port entire stack.

3

BERKELEY PAR LAB

RAMP Blue, July 2007
 1,008 modified MicroBlaze cores
 FPU (64-bit)
RTL directly mapped to FPGA
 90MHz
Runs UPC version of NAS parallel

benchmarks.
Message-passing cluster
No MMU
Requires lots of hardware
 21 BEE2 boards / 84 FPGAs

Difficult to modify
 FPGA computer, not a simulator!

BERKELEY PAR LAB

Dimensions in FAME
(FPGA Architecture Model Execution)

Direct: One target cycle executed in one FPGA host cycle
Decoupled: One target cycle takes one or more FPGA cycles

Full RTL: Complete RTL of target machine modeled
Abstract RTL: Partial/simplified RTL, split functional/timing

Host single-threaded: One target model per host pipeline
Host multi-threaded: Multiple target models per host pipeline

5

BERKELEY PAR LAB

Host Multithreading

CPU
1

CPU
2

CPU
3

CPU
4 Target Model

 Multithreading emulation engine reduces FPGA resource use and
improves emulator throughput

 Hides emulation latencies (e.g., communicating across FPGAs)

Multithreaded Emulation Engine
(on FPGA)

+1

2

PC
1 PC

1 PC
1 PC

1
I$ IR GPR GPR GPR GPR

X

Y

2

D$
Single hardware
pipeline with
multiple copies
of CPU state

BERKELEY PAR LAB

RAMP Gold, November 2009

Rapid accurate simulation of
manycore architectural ideas
using FPGAs
Initial version models 64 cores of
SPARC v8 with shared memory
system on $750 board
Hardware FPU, MMU, boots OS.

Cost Performance
(MIPS) Simulations per day

Simics Software
Simulator $2,000 0.1 - 1 1

RAMP Gold $2,000 + $750 50 - 100 100

7

BERKELEY PAR LAB

RAMP Gold Target Machine

SPARC V8
CORE

I$ D$

DRAM

Shared L2$ / Interconnect

SPARC V8
CORE

I$ D$

SPARC V8
CORE

I$ D$

SPARC V8
CORE

I$ D$

…

64 cores

8

BERKELEY PAR LAB

RAMP Gold Model

Functional
Model
Pipeline

Arch
State

Timing
Model
Pipeline

Timing
State

RAMP emulation model for Parlab
manycore
SPARC v8 ISA
Single-socket manycore target
Split functional/timing model,
both in hardware

–Functional model: Executes ISA
–Timing model: Capture pipeline
timing detail (can be cycle
accurate)

Host multithreading of both
functional and timing models
Built for Virtex-5 systems (ML505

9

BERKELEY PAR LAB

Case Study: Manycore OS
Resource Allocation

 Spatial resource allocation in a manycore
system is hard
 Combinatorial explosion in number of apps and

number of resources

 Idea: use predictive models of app
performance to make it easier on OS

 HW partitioning for performance isolation (so
models still work when apps run together)

 Problem: evaluating effectiveness of
resulting scheduling decisions requires
running hundreds of schedules for billions of
cycles each

 Simulation-bound: 8.3 CPU-years for Simics!
 Read ISCA’10 FAME paper for details

10

BERKELEY PAR LAB

Case Study: Manycore OS
Resource Allocation

11

0

0.5

1

1.5

2

2.5

3

3.5

4

Synthetic Only PARSEC Small

N
or

m
al

iz
ed

 R
un

tim
e

worst
sched.
chosen
sched.
best sched.

BERKELEY PAR LAB

Case Study: Manycore OS
Resource Allocation

 The technique appears to perform very well for synthetic or
reduced-input workloads, but is lackluster in reality!

12

0

0.5

1

1.5

2

2.5

3

3.5

4

Synthetic Only PARSEC Small PARSEC Large

N
or

m
al

iz
ed

 R
un

tim
e

worst
sched.
chosen
sched.
best sched.

BERKELEY PAR LAB

RAMP Gold Distribution

 http://sites.google.com/site/rampgold/
 BSD/GNU licenses
 Many (100?) downloads

 Used by Xilinx tools group as exemplar System Verilog

design

13

http://sites.google.com/site/rampgold/

BERKELEY PAR LAB

RAMP Gold Lessons
 Architects will use it!

 Actually, don’t want to use software simulators now

 Make everything a run-time parameter
 Avoid resynth + P&R

 Difficult to modify highly tuned FPGA designs
 Functional/Timing split should be at µarch. block level

 Really build a microfunctional model

 Standard ISA only gets you so far in research
 Research immediately changes ISA/ABI, so lose compatibility

 Target machine design vital part of architecture research
 Have to understand target to build a model of it!
 Need area/cycle-time/energy numbers from VLSI design

 FAME-7 simulators are very complex hardware designs
 Much more complicated than a processor

 14

BERKELEY PAR LAB

Midas Goals
 Richer set of target machines

 In-order scalar cores, possibly threaded, + various kinds of vector unit
 Various hardware-managed plus software-managed memory hierarchies
 Cross-chip and off-chip interconnect structures

 More modular design
 Trade some FPGA performance to make modifications easier

 Better/more timing models
 Especially interconnect and memory hierarchy

 Better I/O for target system
 Timed I/O to model real-time I/O accurately
 Paravirtual-style network/video/graphics/audio/haptic I/O devices

 Better scaling of simulation performance
 Weak scaling – more FPGA pipelines allow bigger system to run faster
 Strong scaling – more FPGA pipelines allow same system to run faster

 First target machine running apps on Par Lab stack in 2010
15

BERKELEY PAR LAB

Midas ISA Choice
 RISC-V: A new home-grown RISC ISA

 V for Five, V for Vector, V for Variants
 Inspired by MIPS but much cleaner
 Supports 32-bit or 64-bit address space
 32-bit instruction format plus optional variable length (16/32/>32)
 Designed to support easy extension
 Completely open (BSD)

 Are we crazy not to use a standard ISA?
 Standard ISA not very helpful, but standard ABI is
 Standard ABI effectively means running same OS
 Running same OS means modeling hardware platform – too much

work for university
 Also, only interesting standard ISAs are x86 & ARM (+GPU), both

are too complex for university project to implement in full
 We’re going to change ISA plus OS model anyway
 Midas modularity should make it easy to add other ISAs as well 16

BERKELEY PAR LAB

Midas Target Core Design Space
 Scalar cores

 In-order (out-of-order possible later)
 Different issue widths, functional-unit latencies
 Decoupled memory system (non-blocking cache)
 Optional multithreading
 New translation/protection structures for OS support
 Performance counters

 Attached data-parallel accelerator options
 Traditional vector (a la Cray)
 SIMD (a la SSE/AVX)
 SIMT (a la NVIDIA GPU)
 Vector-threading (a la Scale/Maven)
 All with one or more lanes

 Should be possible to model mix of cores for asymmetric
platforms (Same ISA, different µarchitecture)

 17

BERKELEY PAR LAB

Midas Uncore Design Space

 Distributed coherent caches
 Initially, using reverse-map tag directory
 Flexible placement, replication, migration, eviction policies

 Virtual local stores
 Software-managed with DMA engines

 Multistage cross-chip interconnect
 Rings/torus

 Partitioning/QoS hardware
 Cache capacity
 On-chip and off-chip bandwidth

 DRAM access schedulers
 Performance counters
 All fully parameterized for latency/bandwidth settings

18

BERKELEY PAR LAB

Platforms of Interest

 1W – handheld
 10W – laptop/settop/TV/games/car
 100W – servers

19

BERKELEY PAR LAB

Midas Software

 Gcc+binutils as efficiency-level compiler tools
 Already up and running for draft RISC-V spec

 Par Lab OS + software stack for the rest
 Par Lab applications
 Pattern-specific compilers build with SEJITS/Autotuning

help get good app performance quickly on large set of
new architectures

20

BERKELEY PAR LAB

Not just simulators

 New DoE-funded Project Isis (with John Wawrzynek) on

developing high-level hardware design capability
 Integrated approach spanning VLSI design and

simulation
 Building ASIC designs for various scalar+vector cores

 Yes, we will fab chips

 Mapping RTL to FPGAs
 FPGA computers help software developers, helps debug RTL

 Why #1. For designing (not characterising) simple cores,
power model abstractions don’t work (e.g., 2x difference
based on data values).

21

BERKELEY PAR LAB

Acknowledgements

 Sponsors
 ParLab: Intel, Microsoft, UC Discovery, National Instruments,

NEC, Nokia, NVIDIA, Samsung, Sun Microsystems
 Xilinx, IBM, SPARC International
 DARPA, NSF, DoE, GSRC, BWRC

22

	RAMP Gold Wrap
	RAMP Gold Team
	Multicore Architecture Simulation Challenge
	RAMP Blue, July 2007
	Dimensions in FAME�(FPGA Architecture Model Execution)
	Host Multithreading
	RAMP Gold, November 2009
	RAMP Gold Target Machine
	RAMP Gold Model
	Case Study: Manycore OS Resource Allocation
	Case Study: Manycore OS Resource Allocation
	Case Study: Manycore OS Resource Allocation
	RAMP Gold Distribution
	RAMP Gold Lessons
	Midas Goals
	Midas ISA Choice
	Midas Target Core Design Space
	Midas Uncore Design Space
	Platforms of Interest
	Midas Software
	Not just simulators
	Acknowledgements

