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Multicore Architecture 
Simulation Challenge 

 Bigger, more complex target system 
 Many cores, more components, cache coherence, … 
 Need to run OS scheduler, or multithreaded run time 

 Sequential software simulator performance no longer scaling 
 More cores, not faster cores 

 Detailed software simulators don’t parallelize well 
 Cycle-by-cycle synchronization kills parallel performance 

 Parallel code has non-deterministic performance 
 Need multiple runs to get error bars 

 Software more dynamic, adaptive, autotuned, JIT, … 
 Can’t use sampling 

 ~No legacy parallel software 
 Need to write/port entire stack. 
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RAMP Blue, July 2007 
 1,008 modified MicroBlaze cores 
 FPU (64-bit) 
RTL directly mapped to FPGA 
 90MHz 
Runs UPC version of NAS parallel 

benchmarks. 
Message-passing cluster 
No MMU 
Requires lots of hardware 
 21 BEE2 boards / 84 FPGAs 

Difficult to modify 
 FPGA computer, not a simulator! 
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Dimensions in FAME 
(FPGA Architecture Model Execution) 

Direct: One target cycle executed in one FPGA host cycle 
Decoupled: One target cycle takes one or more FPGA cycles 
  
Full RTL: Complete RTL of target machine modeled 
Abstract RTL: Partial/simplified RTL, split functional/timing 
 
Host single-threaded: One target model per host pipeline 
Host multi-threaded: Multiple target models per host pipeline 
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Host Multithreading 
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 Multithreading emulation engine reduces FPGA resource use and 
improves emulator throughput 

 Hides emulation latencies (e.g., communicating across FPGAs) 
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RAMP Gold, November 2009 

Rapid accurate simulation of 
manycore architectural ideas 
using FPGAs 
Initial version models 64 cores of 
SPARC v8 with shared memory 
system on $750 board 
Hardware FPU, MMU, boots OS. 
 

Cost Performance 
(MIPS) Simulations per day 

Simics Software 
Simulator $2,000 0.1 - 1 1 

RAMP Gold $2,000 + $750 50 - 100 100 
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RAMP Gold Target Machine 
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RAMP Gold Model 

Functional 
Model 
Pipeline 

Arch 
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RAMP emulation model for Parlab 
manycore 
SPARC v8 ISA 
Single-socket manycore target 
Split functional/timing model, 
both in hardware 

–Functional model: Executes ISA 
–Timing model: Capture pipeline 
timing detail (can be cycle 
accurate) 

Host multithreading of both 
functional and timing models 
Built for Virtex-5 systems (ML505 
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Case Study: Manycore OS 
Resource Allocation  

 Spatial resource allocation in a manycore 
system is hard 
 Combinatorial explosion in number of apps and 

number of resources 

 Idea: use predictive models of app 
performance to make it easier on OS 

 HW partitioning for performance isolation (so 
models still work when apps run together) 

 Problem: evaluating effectiveness of 
resulting scheduling decisions requires 
running hundreds of schedules for billions of 
cycles each 

 Simulation-bound: 8.3 CPU-years for Simics! 
 Read ISCA’10 FAME paper for details 
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Case Study: Manycore OS 
Resource Allocation  
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Case Study: Manycore OS 
Resource Allocation  

 The technique appears to perform very well for synthetic or 
reduced-input workloads, but is lackluster in reality!  
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RAMP Gold Distribution 

 http://sites.google.com/site/rampgold/ 
 BSD/GNU licenses 
 Many (100?) downloads 

 
 Used by Xilinx tools group as exemplar System Verilog 

design 
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RAMP Gold Lessons 
 Architects will use it! 

 Actually, don’t want to use software simulators now 

 Make everything a run-time parameter 
 Avoid resynth + P&R 

 Difficult to modify highly tuned FPGA designs 
 Functional/Timing split should be at µarch. block level 

 Really build a microfunctional model 

 Standard ISA only gets you so far in research 
 Research immediately changes ISA/ABI, so lose compatibility 

 Target machine design vital part of architecture research 
 Have to understand target to build a model of it! 
 Need area/cycle-time/energy numbers from VLSI design 

 FAME-7 simulators are very complex hardware designs 
 Much more complicated than a processor 
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Midas Goals 
 Richer set of target machines 

 In-order scalar cores, possibly threaded, + various kinds of vector unit 
 Various hardware-managed plus software-managed memory hierarchies 
 Cross-chip and off-chip interconnect structures 

 More modular design 
 Trade some FPGA performance to make modifications easier 

 Better/more timing models 
 Especially interconnect and memory hierarchy 

 Better I/O for target system 
 Timed I/O to model real-time I/O accurately 
 Paravirtual-style network/video/graphics/audio/haptic I/O devices 

 Better scaling of simulation performance 
 Weak scaling – more FPGA pipelines allow bigger system to run faster 
 Strong scaling – more FPGA pipelines allow same system to run faster 

 First target machine running apps on Par Lab stack in 2010 
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Midas ISA Choice 
 RISC-V: A new home-grown RISC ISA 

 V for Five, V for Vector, V for Variants 
 Inspired by MIPS but much cleaner 
 Supports 32-bit or 64-bit address space 
 32-bit instruction format plus optional variable length (16/32/>32) 
 Designed to support easy extension 
 Completely open (BSD) 

 Are we crazy not to use a standard ISA? 
 Standard ISA not very helpful, but standard ABI is 
 Standard ABI effectively means running same OS 
 Running same OS means modeling hardware platform – too much 

work for university 
 Also, only interesting standard ISAs are x86 & ARM (+GPU), both 

are too complex for university project to implement in full 
 We’re going to change ISA plus OS model anyway 
 Midas modularity should make it easy to add other ISAs as well 16 
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Midas Target Core Design Space 
 Scalar cores 

 In-order (out-of-order possible later) 
 Different issue widths, functional-unit latencies 
 Decoupled memory system (non-blocking cache) 
 Optional multithreading 
 New translation/protection structures for OS support 
 Performance counters 

 Attached data-parallel accelerator options 
 Traditional vector (a la Cray) 
 SIMD (a la SSE/AVX) 
 SIMT (a la NVIDIA GPU) 
 Vector-threading (a la Scale/Maven) 
 All with one or more lanes 

 Should be possible to model mix of cores for asymmetric 
platforms (Same ISA, different µarchitecture) 
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Midas Uncore Design Space 

 Distributed coherent caches 
 Initially, using reverse-map tag directory 
 Flexible placement, replication, migration, eviction policies 

 Virtual local stores 
 Software-managed with DMA engines 

 Multistage cross-chip interconnect 
 Rings/torus 

 Partitioning/QoS hardware 
 Cache capacity 
 On-chip and off-chip bandwidth 

 DRAM access schedulers 
 Performance counters 
 All fully parameterized for latency/bandwidth settings 
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Platforms of Interest 

 1W – handheld 
 10W – laptop/settop/TV/games/car 
 100W – servers 
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Midas Software 

 Gcc+binutils as efficiency-level compiler tools 
 Already up and running for draft RISC-V spec 

 Par Lab OS + software stack for the rest 
 Par Lab applications 
 Pattern-specific compilers build with SEJITS/Autotuning 

help get good app performance quickly on large set of 
new architectures 
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Not just simulators 

 
 New DoE-funded Project Isis (with John Wawrzynek) on 

developing high-level hardware design capability 
 Integrated approach spanning VLSI design and 

simulation 
 Building ASIC designs for various scalar+vector cores 

 Yes, we will fab chips 

 Mapping RTL to FPGAs 
 FPGA computers help software developers, helps debug RTL 

 Why #1. For designing (not characterising) simple cores, 
power model abstractions don’t work (e.g., 2x difference 
based on data values). 
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