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Multicore Architecture 
Simulation Challenge 

 Bigger, more complex target system 
 Many cores, more components, cache coherence, … 
 Need to run OS scheduler, or multithreaded run time 

 Sequential software simulator performance no longer scaling 
 More cores, not faster cores 

 Detailed software simulators don’t parallelize well 
 Cycle-by-cycle synchronization kills parallel performance 

 Parallel code has non-deterministic performance 
 Need multiple runs to get error bars 

 Software more dynamic, adaptive, autotuned, JIT, … 
 Can’t use sampling 

 ~No legacy parallel software 
 Need to write/port entire stack. 
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RAMP Blue, July 2007 
 1,008 modified MicroBlaze cores 
 FPU (64-bit) 
RTL directly mapped to FPGA 
 90MHz 
Runs UPC version of NAS parallel 

benchmarks. 
Message-passing cluster 
No MMU 
Requires lots of hardware 
 21 BEE2 boards / 84 FPGAs 

Difficult to modify 
 FPGA computer, not a simulator! 
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Dimensions in FAME 
(FPGA Architecture Model Execution) 

Direct: One target cycle executed in one FPGA host cycle 
Decoupled: One target cycle takes one or more FPGA cycles 
  
Full RTL: Complete RTL of target machine modeled 
Abstract RTL: Partial/simplified RTL, split functional/timing 
 
Host single-threaded: One target model per host pipeline 
Host multi-threaded: Multiple target models per host pipeline 
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Host Multithreading 
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 Multithreading emulation engine reduces FPGA resource use and 
improves emulator throughput 

 Hides emulation latencies (e.g., communicating across FPGAs) 
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RAMP Gold, November 2009 

Rapid accurate simulation of 
manycore architectural ideas 
using FPGAs 
Initial version models 64 cores of 
SPARC v8 with shared memory 
system on $750 board 
Hardware FPU, MMU, boots OS. 
 

Cost Performance 
(MIPS) Simulations per day 

Simics Software 
Simulator $2,000 0.1 - 1 1 

RAMP Gold $2,000 + $750 50 - 100 100 
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RAMP Gold Target Machine 
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RAMP Gold Model 

Functional 
Model 
Pipeline 

Arch 
State 

Timing 
Model 
Pipeline 

Timing 
State 

RAMP emulation model for Parlab 
manycore 
SPARC v8 ISA 
Single-socket manycore target 
Split functional/timing model, 
both in hardware 

–Functional model: Executes ISA 
–Timing model: Capture pipeline 
timing detail (can be cycle 
accurate) 

Host multithreading of both 
functional and timing models 
Built for Virtex-5 systems (ML505 
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Case Study: Manycore OS 
Resource Allocation  

 Spatial resource allocation in a manycore 
system is hard 
 Combinatorial explosion in number of apps and 

number of resources 

 Idea: use predictive models of app 
performance to make it easier on OS 

 HW partitioning for performance isolation (so 
models still work when apps run together) 

 Problem: evaluating effectiveness of 
resulting scheduling decisions requires 
running hundreds of schedules for billions of 
cycles each 

 Simulation-bound: 8.3 CPU-years for Simics! 
 Read ISCA’10 FAME paper for details 
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Case Study: Manycore OS 
Resource Allocation  
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Case Study: Manycore OS 
Resource Allocation  

 The technique appears to perform very well for synthetic or 
reduced-input workloads, but is lackluster in reality!  
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RAMP Gold Distribution 

 http://sites.google.com/site/rampgold/ 
 BSD/GNU licenses 
 Many (100?) downloads 

 
 Used by Xilinx tools group as exemplar System Verilog 

design 
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RAMP Gold Lessons 
 Architects will use it! 

 Actually, don’t want to use software simulators now 

 Make everything a run-time parameter 
 Avoid resynth + P&R 

 Difficult to modify highly tuned FPGA designs 
 Functional/Timing split should be at µarch. block level 

 Really build a microfunctional model 

 Standard ISA only gets you so far in research 
 Research immediately changes ISA/ABI, so lose compatibility 

 Target machine design vital part of architecture research 
 Have to understand target to build a model of it! 
 Need area/cycle-time/energy numbers from VLSI design 

 FAME-7 simulators are very complex hardware designs 
 Much more complicated than a processor 
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Midas Goals 
 Richer set of target machines 

 In-order scalar cores, possibly threaded, + various kinds of vector unit 
 Various hardware-managed plus software-managed memory hierarchies 
 Cross-chip and off-chip interconnect structures 

 More modular design 
 Trade some FPGA performance to make modifications easier 

 Better/more timing models 
 Especially interconnect and memory hierarchy 

 Better I/O for target system 
 Timed I/O to model real-time I/O accurately 
 Paravirtual-style network/video/graphics/audio/haptic I/O devices 

 Better scaling of simulation performance 
 Weak scaling – more FPGA pipelines allow bigger system to run faster 
 Strong scaling – more FPGA pipelines allow same system to run faster 

 First target machine running apps on Par Lab stack in 2010 
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Midas ISA Choice 
 RISC-V: A new home-grown RISC ISA 

 V for Five, V for Vector, V for Variants 
 Inspired by MIPS but much cleaner 
 Supports 32-bit or 64-bit address space 
 32-bit instruction format plus optional variable length (16/32/>32) 
 Designed to support easy extension 
 Completely open (BSD) 

 Are we crazy not to use a standard ISA? 
 Standard ISA not very helpful, but standard ABI is 
 Standard ABI effectively means running same OS 
 Running same OS means modeling hardware platform – too much 

work for university 
 Also, only interesting standard ISAs are x86 & ARM (+GPU), both 

are too complex for university project to implement in full 
 We’re going to change ISA plus OS model anyway 
 Midas modularity should make it easy to add other ISAs as well 16 
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Midas Target Core Design Space 
 Scalar cores 

 In-order (out-of-order possible later) 
 Different issue widths, functional-unit latencies 
 Decoupled memory system (non-blocking cache) 
 Optional multithreading 
 New translation/protection structures for OS support 
 Performance counters 

 Attached data-parallel accelerator options 
 Traditional vector (a la Cray) 
 SIMD (a la SSE/AVX) 
 SIMT (a la NVIDIA GPU) 
 Vector-threading (a la Scale/Maven) 
 All with one or more lanes 

 Should be possible to model mix of cores for asymmetric 
platforms (Same ISA, different µarchitecture) 
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Midas Uncore Design Space 

 Distributed coherent caches 
 Initially, using reverse-map tag directory 
 Flexible placement, replication, migration, eviction policies 

 Virtual local stores 
 Software-managed with DMA engines 

 Multistage cross-chip interconnect 
 Rings/torus 

 Partitioning/QoS hardware 
 Cache capacity 
 On-chip and off-chip bandwidth 

 DRAM access schedulers 
 Performance counters 
 All fully parameterized for latency/bandwidth settings 
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Platforms of Interest 

 1W – handheld 
 10W – laptop/settop/TV/games/car 
 100W – servers 
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Midas Software 

 Gcc+binutils as efficiency-level compiler tools 
 Already up and running for draft RISC-V spec 

 Par Lab OS + software stack for the rest 
 Par Lab applications 
 Pattern-specific compilers build with SEJITS/Autotuning 

help get good app performance quickly on large set of 
new architectures 
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Not just simulators 

 
 New DoE-funded Project Isis (with John Wawrzynek) on 

developing high-level hardware design capability 
 Integrated approach spanning VLSI design and 

simulation 
 Building ASIC designs for various scalar+vector cores 

 Yes, we will fab chips 

 Mapping RTL to FPGAs 
 FPGA computers help software developers, helps debug RTL 

 Why #1. For designing (not characterising) simple cores, 
power model abstractions don’t work (e.g., 2x difference 
based on data values). 
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